Aircraft Observations of the Lower Atmosphere and Surface Exchange Processes

Jennifer Murphy Department of Chemistry, University of Toronto

Outline

• Results from BAe-146 during AMMA

• Aircraft observations over Canada

• Existing capacity in Canadian atmospheric chemistry academic community

African Monsoon Multidisciplinary Analysis (AMMA)

AMMA-UK Flight Tracks

UK BAe-146 (FAAM) Facility for Atmospheric Airborne Measurements

100 hours between July 15- Aug 18, 2006

CO, O_3 , NO_x VOC (in situ and canister) OH, HO_2 , RO_2 CH₂O, ROOH aerosol number, physical properties and composition

dropsondes

Coordinated flight plans

I4 with ATR42, F-F20 & Bae-146 (1)

VOC measurements by PTR-MS

Murphy et al., ACPD, 2010

Coupling of Chemistry and Dynamics – Shallow Convection

Coupling of Chemistry and Dynamics – Deep Convection

Coupling of Chemistry and Dynamics – Long Range Transport of Biomass Burning

700 mb from the TERRAtude and time and averaged

Mari et al., ACP, 2008

Murphy et al., ACPD, 2010

Isoprene Flux Modelling using MEGAN

^{Lon (degrees)} Fereira et al., ACPD, 2010

Top Down Constraints on VOC

Use satellite observations of CH₂O

To constrain modelled emission inventories of biogenic VOC

GEOS-Chem Biogenic VOC Emissions

Millet et al., JGR, 2008

Top Down Constraints on NO_x

Emissions of NO_x from recently wetted soils

Land Surface Temperature Anomaly

boundary layer NO_x concentration

Purple = colder than usual and therefore recently wet

Stewart et al., ACP, 2008

Localized ozone production

Stewart et al., ACP, 2008

Boundary Layer Ozone: forest is a sink, wet soil is a source of precursors

Assessing satellite constraints on boundary layer ozone

Ozone Differences:

Mean August surface O₃ (12-18 hr, local time) in GEOS-Chem

GEOS-Chem O3 with TES O3 assimilation and NOx and isoprene emissions based on SCIAMACHY and OMI data

In situ observations of O₃, NO, NO₂, OH, HO₂, HCHO, etc... throughout the boundary layer and lower troposphere would be valuable for validating the changes in atmospheric composition associated with incorporating the satellite data into the model.

Contributed by Dylan Jones

Other Aircraft Missions over Canada

- TOPSE 2000
- ICARTT 2004
- INTEX 2006
- ARCTAS 2008
- BORTAS 2010

Trans–Pacific Aerosol Transport Observed by Aircraft and Satellite

Contributed by Randall Martin

Intercontinental Chemical Transport Experiment (INTEX-B)

Mass Concentration [µg/m³]

van Donkelaar et al., ACP, 2008

ARCTAS 2008

Figure from 2007 White Paper

BORTAS PI: Paul Palmer, University of Edinburgh

Existing Canadian Interest/Capacity in Atmospheric Chemistry Academic Community

<u>Institution</u>	<u>Measurements</u>	<u>Modelling</u>
U of Toronto	Murphy	Jones
	Abbatt	
York	McLaren	
Waterloo	Sloan	Lin
U of Calgary	Osthoff	
Dalhousie	Duck	Martin Pierce

Department of Chemistry, University of Calgary, 2500 University Drive NW | Calgary, AB T2N 1N4, Canada http://homepages.ucalgary.ca/~hosthoff/ hans.osthoff@ucalgary.ca | 403-220-8689

Instrumentation for field trace gas measurements

Chemical Ionization mass spectrometer

<u>Target species</u>: PAN, PPN, APAN, MPAN, CINO₂, Cl₂, Br₂

<u>Sensitivity</u> (1 sec data):

- PANs: better than 1 pptv
- CINO₂: better than 5 pptv

Specifications:

- dimensions: w. 21", h. 52", d. 40"
- weight 250 lbs
- power requirement: 850 watt

Upgrades required for aircraft duty:

- construction of rear-facing inlet
- remount in aircraft-certified 19" rack-mount frame
- aircraft certification

Diode laser cavity ring-down spectrometer (under construction)

Target species: N_2O_5 , NO_3

<u>Sensitivity</u> (1 sec data): • better than 5 ppty

Specifications:

- dimensions: w. 21", h. 45", d. 29"
- weight: tbd (<200 lbs expected)
- power requirement: tbd (< 1kW expected)

Upgrades required for aircraft duty:

- construction of rear-facing inlet
- remount in 19" rack-mount frame
- aircraft certification

IITY

